

Langzeittransaktionen in mobilen Client-Server-Systemen

JavaForum
Stuttgart 2003
Peter Rudolph
Andreas Billmann
3. Juli 2003

Definitionen

Beispiel u. Konflikte

sLAB's Lösungskonzept

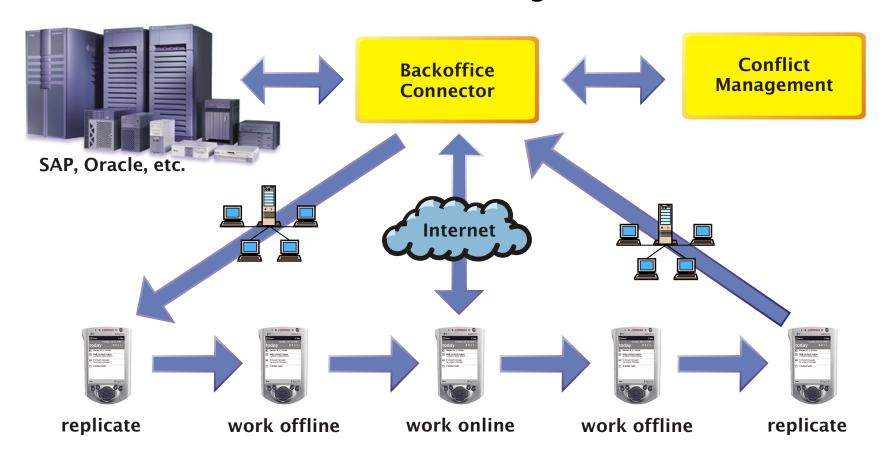
Technischer Einblick

Ausblick

1.1 Was sind mobile Geräte?

- Notebook-Computer
- Tablet-PCs
- Wearable Computer
- PDAs (Palm OS, Windows CE, ...)
- SmartPhones wie z.B. Nokia Communicator
- Java-fähige Handys
- Drahtlose Netzwerk-Verbindung über
 - Mobilfunk
 - Funknetzwerk (WLAN, Bluetooth))
 - direkte PC-Verbindung (Docking-Station, Infrarot, Bluetooth, ...)

- Permanente Netzwerkverbindungen sind unrealistisch
 - Kosten für Verbindung über Mobilfunk
 - Kosten für Netzabdeckung z.B. mit WLAN (Reichweite innerhalb von Gebäuden ca. 50m oder weniger)
 - Folge: Applikation und Daten müssen lokal verfügbar sein
- Die meisten Mobilgeräte sind als Browser ungeeignet
 - Gute Benutzerführung ist entscheidend für die Akzeptanz mobiler Software
 - Kleine Displays, eingeschränkte Texteingabe, fehlende Maus, etc. müssen berücksichtigt werden
 - Folge: Applikation muss fürs Mobilgerät optimiert werden


- Nutzung Mobiler Geräte als "beweglicher" Client
 - Zugriff auf zentralen Datenbestand (Backoffice)
 - Teile der Funktionalität des Backoffice sind verfügbar
- Datenbearbeitung auf dem Mobilgerät erwünscht
 - Mobilgerät ist kein reines Anzeigegerät
- Arbeiten mit Datenkopien ohne Serververbindung
 - Teile des Datenbestands werden geändert oder entstehen auf dem Mobilgerät offline (ohne Serververbindung)
 - Abgleichintervall von offline geänderten Daten liegt typischerweise im Stunden- bis Tagebereich
 - Teile des Datenbestands können von mehreren Personen konkurrierend geändert werden

1.5 Intermittierende Verbindung

Intermittierend

- Dynamischer Wechsel zwischen Online- und Offline-Zugriff auf Daten und Anwendungen
- Vollständiger Datenabgleich meist nur bei kostengünstiger und schneller Netzwerkverbindung

Definitionen

Beispiel u. Konflikte

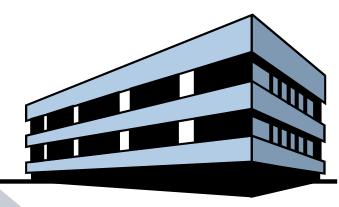
sLAB's Lösungskonzept

Technischer Einblick

Ausblick

1. Im Büro

Vollständiger Datenabgleich mit dem Backoffice: Termine, Kundendaten, Artikelliste, aktuelle Preise.



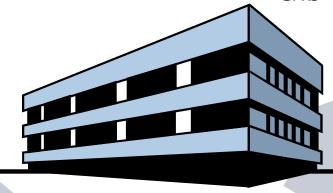
1. Im Büro

Vollständiger Datenabgleich mit dem Backoffice: Termine, Kundendaten, Artikelliste, aktuelle Preise.


2. Während der Arbeit

1. Im Büro

Vollständiger Datenabgleich mit dem Backoffice: Termine, Kundendaten, Artikelliste, aktuelle Preise.



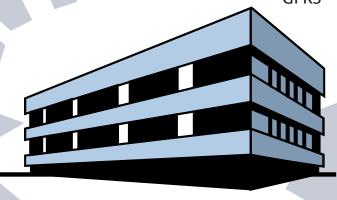
3. Auftrag erledigt

Kunde unterschreibt den Auftrag: Display, digitale Signatur, Handy, etc.

Optional: sofortige Übermittlung der Bestellung z.B. per GPRS

2. Während der Arbeit

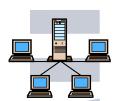
1. Im Büro


Vollständiger Datenabgleich mit dem Backoffice: Termine, Kundendaten, Artikelliste, aktuelle Preise.

3. Auftrag erledigt Kunde unterschreibt

den Auftrag:
Display, digitale
Signatur, Handy, etc.

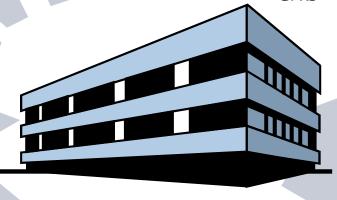
Optional: sofortige Übermittlung der Bestellung z.B. per GPRS


2. Während der Arbeit

1. Im Büro

Vollständiger Datenabgleich mit dem Backoffice: Termine, Kundendaten, Artikelliste, aktuelle Preise.

4. Kundendaten empfangen

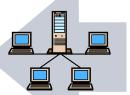

Vertriebsmitarbeiter holt weitere Kundendaten vom Backoffice

3. Auftrag erledigt

Kunde unterschreibt den Auftrag: Display, digitale Signatur, Handy, etc.

Optional: sofortige Übermittlung der Bestellung z.B. per GPRS

2. Während der Arbeit

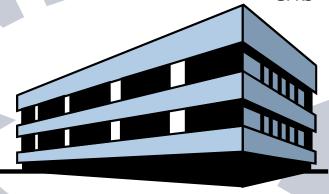

1. Im Büro

Vollständiger Datenabgleich mit dem Backoffice: Termine, Kundendaten, Artikelliste, aktuelle Preise.

4. Kundendaten empfangen

Vertriebsmitarbeiter holt weitere Kundendaten vom Backoffice

5. In Bestell-Zentrale


Übertragen aller noch nicht übermittelten Daten ans Backoffice.

3. Auftrag erledigt

Kunde unterschreibt den Auftrag: Display, digitale Signatur, Handy, etc.

Optional: sofortige Übermittlung der Bestellung z.B. per GPRS

2. Während der Arbeit

6. Konfliktlösung

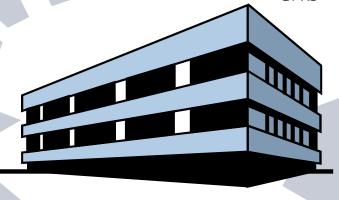
Meist durch einen Kollegen im Innendienst: Doppelt erfasste Daten, Tippfehler im Auftrag, Lagerbestand nicht ausreichend, etc.

5. In Bestell-Zentrale

Übertragen aller noch nicht übermittelten Daten ans Backoffice.

Vollständiger Datenabgleich mit dem Backoffice: Termine, Kundendaten, Artikelliste, aktuelle Preise.

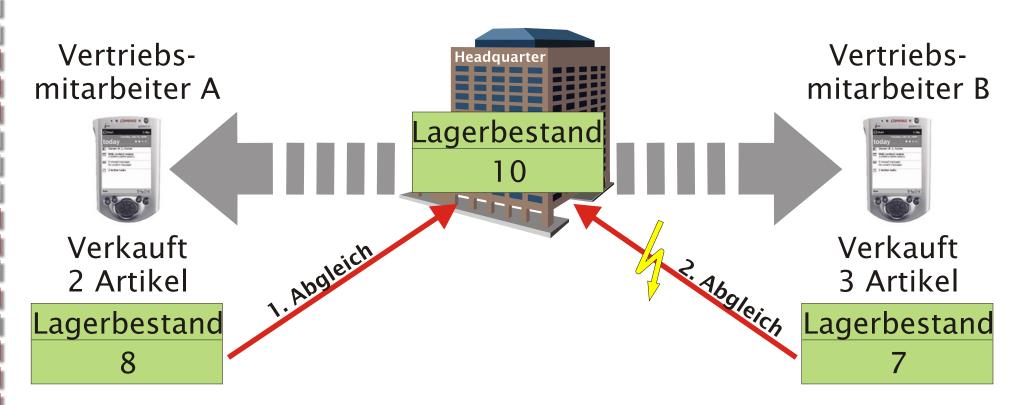
4. Kundendaten empfangen


Vertriebsmitarbeiter holt weitere Kundendaten vom Backoffice

3. Auftrag erledigt

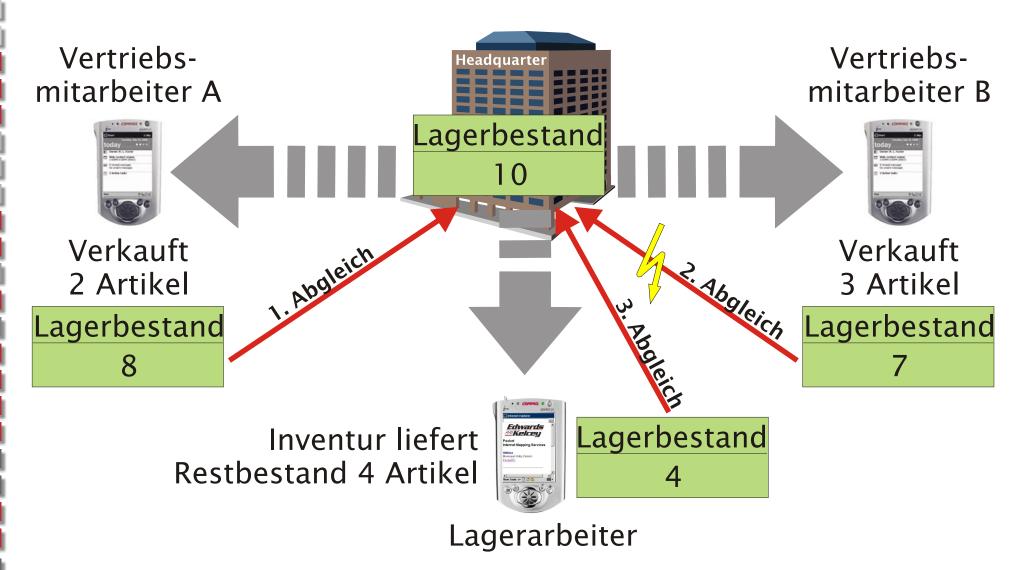
Kunde unterschreibt den Auftrag: Display, digitale Signatur, Handy, etc.

Optional: sofortige Übermittlung der Bestellung z.B. per GPRS



2. Während der Arbeit

2.2 Lagerbestandsproblem


Beispiel: Lagerbestand beim Vertrieb von Waren

2.2 Lagerbestandsproblem

Beispiel: Lagerbestand beim Vertrieb von Waren

2.3 Konfliktszenarien

Erzeugung

 Derselbe Datensatz wurde mit anderen Daten von einem anderen Anwender erzeugt und bereits auf den Server übertragen.

Änderung

• Ein anderer Anwender hat denselben Datensatz geändert und bereits auf den Server übertragen.

Inkonsistenz

 Der Datensatz ist in sich nicht konsistent, was aber auf dem Mobilgerät nicht ermittelt werden konnte.

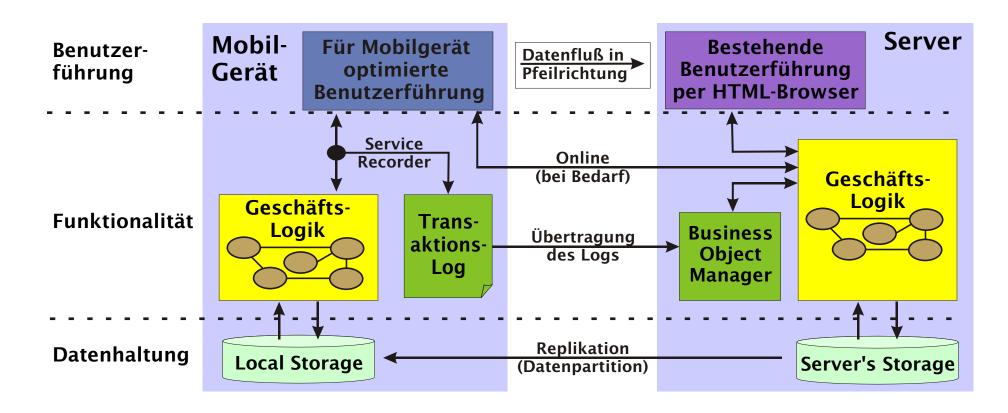
Veraltete Daten

 Der Anwender hat Entscheidungen auf Basis veralteter Daten getroffen.

Definitionen

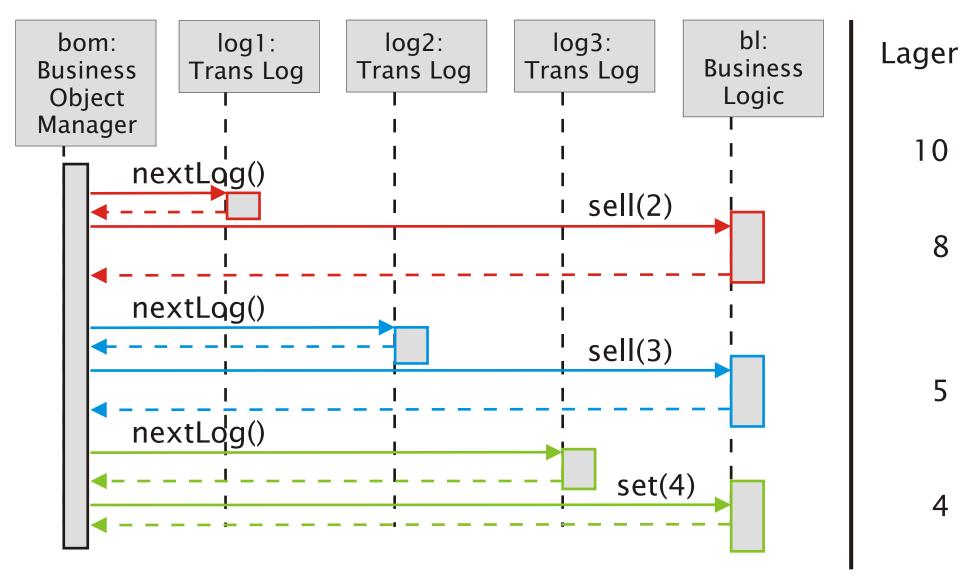
Beispiel u. Konflikte

sLAB's Lösungskonzept

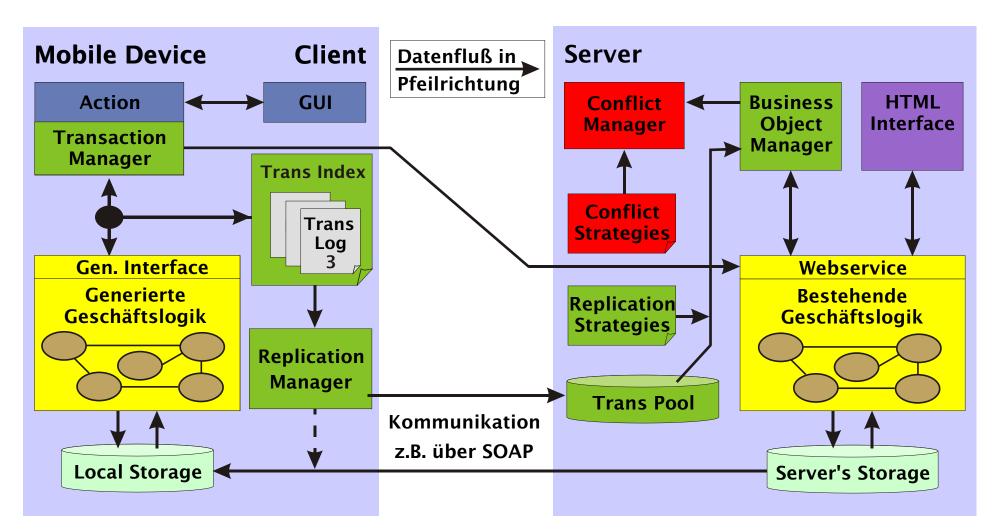

Technischer Einblick

Ausblick

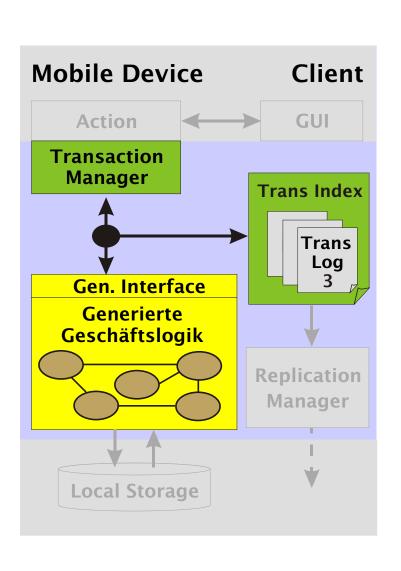
3.1 Konzepte / Ansatz sLAB


 Auf dem Mobilgerät werden alle Aufrufe der Geschäftslogik aufgezeichnet und später auf dem Server abgefahren

3.2 Lösung des Lagerproblems


Sequenzdiagramm: Lösung für Vertriebskonflikt

3.3 Detaildarstellung Konzept


INFORMATIONSSYSTEME

- Generatoren erlaubt die Übernahme der Geschäftslogik auf das Mobilgerät
- WebServices als Standard-Schnittstelle

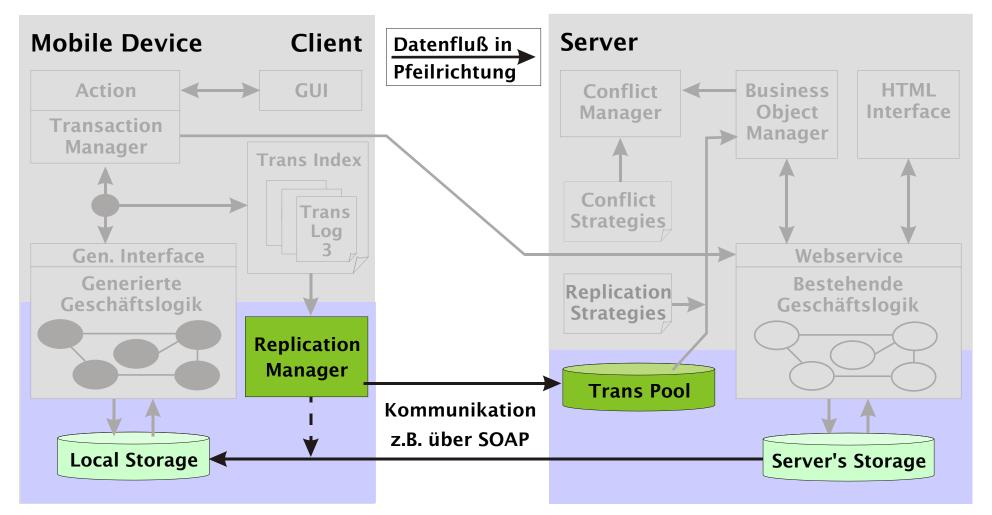
3.4 Transaction Recording

Transaktions Manager

- protokolliert Aufrufe der Geschäftslogik
- bietet Commit und Rollback

Trans Index

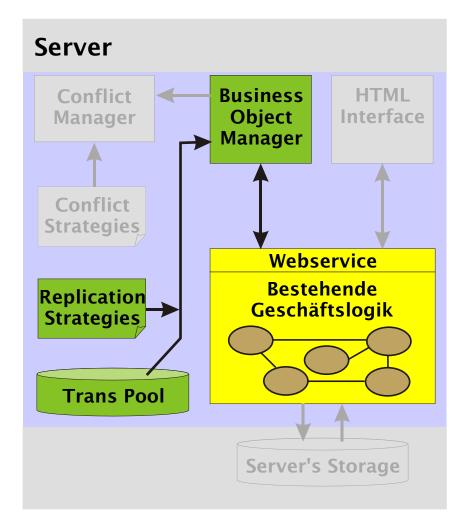
- enthält die Transaktionsreihenfolge
- merkt sich Modellrefrenzen transaktionsübergreifend


Trans Log

 enthält alle an einer Transaktion beteiligten Aufrufe der Geschäftslogik inklusive Parameter

3.5 Replication

INFORMATIONSSYSTEME

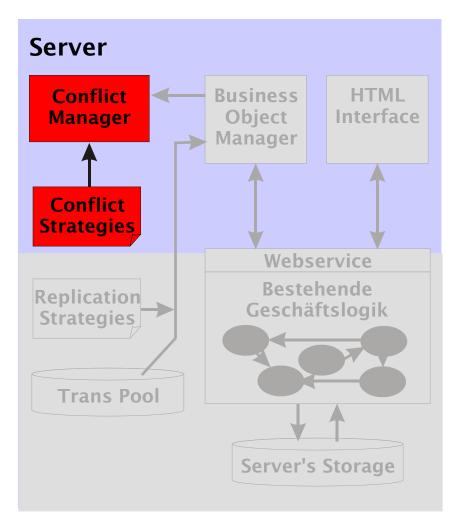

- Datenübertragung meist über HTTP
- Trans Log wird an den Server übertragen
- Daten aus der DB werden an den Client übertragen

3.6 Replication

- Trans Pool
 - verwaltet die eingegangenen Trans Logs
- Replication Strategies
 - verschiedene Strategien wie die Trans Logs abgearbeitet werden. z.B. fifo,lifo,prioritätsgesteuert,...
- Business Object Manager
 - ruft die Geschäftslogik auf

3.7 Conflict Manager

Konflikte


- inkonsistente Daten
- unvollständige Daten
- doppelte Erfassung von Daten
- **...**

Conflict Manager

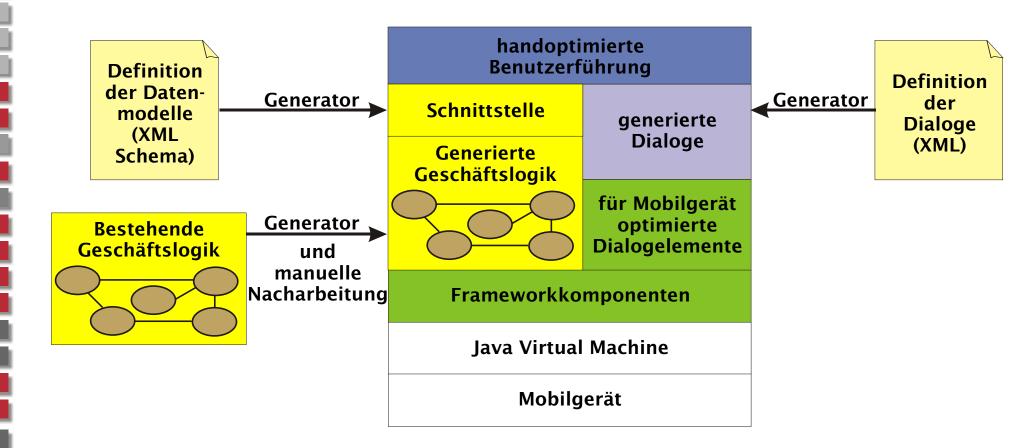
 Erkennt und verwaltet aufgetretene Konflikte

Conflict Strategies

- algorithmische Lösung
- manuelle Lösung
- gemischte Lösung

Definitionen

Beispiel u. Konflikte

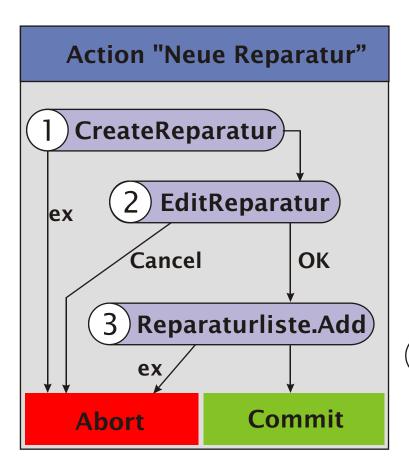

sLAB's Lösungskonzept

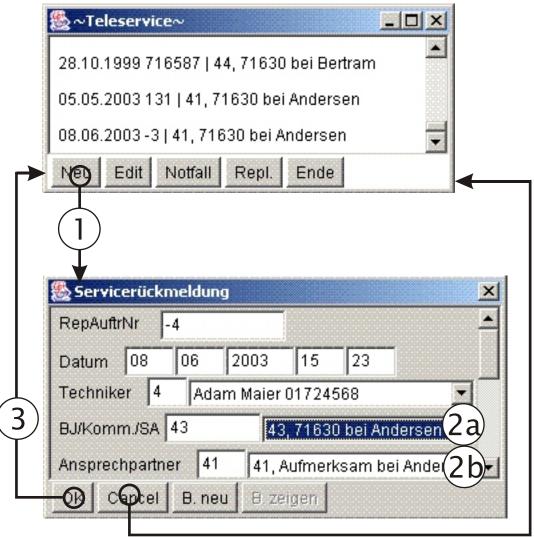
Technischer Einblick

Ausblick

4.1 Implementierung Mobilgerät

- Datenmodell wird aus meist bestehendem XML Schema generiert (z.B. WSDL von WebServices)
- Dialoge werden mittels XML definiert und dann für die Zielplattform(en) generiert




INFORMATIONSSYSTEME

4.2 Beispiel-Action: Ablauf

- Neue Reparatur anlegen
 - Die Action wird über einen Button ausgelöst

4.3 Beispiel-Action: Code und Log


```
//--- 1: erstelle neue Reparatur
dialogModel = transactionManager.call(DataAccess.OPID CREATE REPARATUR);
<ns0:OPERATION ID="ns0:0" opID="ns1:OpCreateReparatur"</pre>
  ownerRef="ns1:ServerDataAccess" dialogRef="ns1:Main"
  resultRef="ns2:-4">
//--- 2: editiere neue Reparatur (dialog)
edit(dialogModel);
<ns0:OPERATION ID="ns0:3" opID="ns0:OpChangeValue"</pre>
  ownerRef="" dialogRef="ns1:Servicerueckmeldung/Main">
  <ns0:PARAM_MODELREF ID="ns0:modelRef" value="ns2:-4"/>
  <ns0:PARAM ID="ns1:MASCHINEN_ID" value="43"/>
  <ns0:PARAM ID="ns1:ANSPRECHPARTNER_ID" value="41"/>
</ns0:OPERATION>
//--- 3: neue Reparatur der Liste hinzufügen
transactionManager.call(DataAccess.OPID ADD REPARATUR, dialogModel, dialog);
<ns0:OPERATION ID="ns0:11" opID="ns1:OpAddReparatur"</pre>
  ownerRef="ns1:ServerDataAccess"
  dialogRef="ns1:Servicerueckmeldung/Main">
  <ns0:PARAM_MODELREF ID="ns1:ParamReparatur" value="ns2:-4"/>
</ns0:OPERATION>
```

schwarz Quellcodegrün Transaktionslogeintrag

orange hellblau Modellbezug OperationID

Definitionen

Beispiel u. Konflikte

sLAB's Lösungskonzept

Technischer Einblick

Ausblick

5.1 Erfahrungen

Probleme mit GUI

- Viele schlechte Benutzerschnittstellen
- Bibliotheken für Benutzerschnittstellen versuchen MS Windows nachzubilden
- Bedienungskonzept der Handys schreckt ab

Lösung

 eigene GUI-Bibliothek und Forschung in Zusammenarbeit mit dem Usibilitylabor des Fraunhoferinstituts

Handy / J2ME

Anlehnung an MS Windows

sLAB

Framework

- alle Bausteine zumindest grundlegend implementiert
- "InHouse-Benutzung", kein fertiges Produkt

"Mobiles KnowHow" wird stetig erweitert

- 7 abgeschlossenen Diplomarbeiten + 2 laufende
- Forschungprojekte
 - Partner: Fraunhofer Institut, Uni München, Uni Tübingen, Uni Jena, Intershop, Hamburger Hafen e.V.

laufende Projekte

- Erfassung von Ordnungswidrigkeiten (Autobahnpolizei Stuttgart)
- TeleService (Modellfabrik Fraunhoferinstitut)

5.3 Roadmap

- Dieses Jahr (2003)
 - Weitere Projekte auf Basis des Frameworks abgeschlossen
 - Weitere Referenzen verfügbar
 - Großteil des Frameworks vollständig implementiert
 - Projekte mit OEM Partnern,
 - Betriebsdatenerfassung
- Zeiterfassung

Mobile Office

- Projektplanungssystem
- Forschungsprojekt imBereich CRM
- In 2-3 Jahren (falls Bedarf am Markt)
 - Produktisierung "Mobilen Frameworks"
 - Vertrieb über Partnerfirmen
 - sLAB ist Technologielieferant in Form von Mobilen Produkten und/oder Framework
- Kontakt: Peter.Rudolph@slab.de, http://www.slab.de