
Real-Time Specification for Java and
certification aspects.

... Profitting from Java in embedded,
realtime and safety-critical
applications.

Dr.-Ing. Fridtjof Siebert
Director of Development, aicas GmbH

Java Forum Stuttgart, 3. July 2003

Who is aicas GmbH?
Aim: Promotion of modern software development
methods in embedded and time-critical control, systems.

aicas's partners and customers:

aicas GmbH  Company Profile

aicas Java activities
European projects:

HIDOORS High Integrity Distributed Object-
Oriented Realtime Systems

ESA activities:
AERO Architecture for Enhanced

Reprogrammability...

RT Java Standardisation:
J-Consortium active member, work on RTDA
The Open Group RT Java group

Java User Community:
JUGS, JUG Java User Groups
Live Embedded-Linux Group

aicas GmbH  Company Profile

Deeply embedded realtime
applications

Examples:
automotive, avionic, industrial automation, telecom,
medical, ...

Java Technology for Realtime Systems

Why Java Technology for realtime
systems?

� Higher productivity

� Platform independence

� Reliability (type/pointer safety)

� Flexibility (dynamic loading)

Problems:

� Memory requirements

� Poor runtime performance

� Lack of realtime guarantees

Java Technology for Realtime Systems

Classic Garbage Collector

GC can stop execution for long periods of time:

Problem:
long, unpredictable pauses during execution.

Realtime Specification for Java: Overview

Real-Time Specification for Java (RTSJ)

Extension of Java APIs to allow realtime programming

Areas addressed by the RTSJ:

� Thread Scheduling

� Synchronisation

� Memory Management

� Asynchronous Events

� Asynchronous Control Flow / Thread Termination

� Access to physical memory

Realtime Specification for Java: Overview

Threads in the RTSJ

Realtime-Threads with at least 28 new priority levels:

New thread classes:

� RealtimeThread

� NoHeapRealtimeThread

Priority preemptive scheduling for these threads.

Priorities are higher than those of standard Java threads.

Realtime Specification for Java: Overview

Synchronisation

Priority Inversion Avoidance mechanisms:

Priority Inheritance Protocol:

� Default behaviour of Java Monitors

Priority Ceiling Protocol:

� Optional protocol

Realtime Specification for Java: Overview

Memory Management

Aims:

� predictable allocation

� no garbage collection in critical code

New memory areas are available:

� ImmortalMemory -- never collected

� ScopedMemory -- stack-like allocation

Realtime Specification for Java: Overview

Garbage Collection in the RTSJ
Only special threads can interrupt the garbage collector::

The application must be split into a realtime and a non-
realtime part. Synchronization between these parts is not
possible!

Realtime Specification for Java: Overview

Asynchronous Events

Implementation of Interrupt Handlers.

Features:

� Similar to Realtime Threads

� Priority and scheduling parameters such as Threads

� Handlers are executed in a thread context

� This context might change between invocations

Realtime Specification for Java: Overview

Asynchronous Control Flow

Mechanism to throw an exception into another thread.

Applications:

� Provide a time-out for a calculation

� Terminate a thread that is no longer used

Realtime Specification for Java: Overview

Access to Physical Memory

Safe access to physical memory regions:

Examples:

� Memory Mapped IO

� On-chip caches

Two Ways to access phyiscal memory:

� Raw-Memory, i.e., byte-wise

� As an Memory Area to store Java objects

Realtime Specification for Java: Overview

Periodic Thread Example
 /* priority for new thread: min+10 */
 int pri = PriorityScheduler.instance().getMinPriority()+10;
 PriorityParameters prip = new PriorityParameters(pri);

 RelativeTime period = new RelativeTime(20 /* ms */,0 /* ns */);
 /* release parameters for periodic thread: */
 PeriodicParameters perp = new PeriodicParameters(null,period,null,null,null,null);
 /* create periodic thread: */
 RealtimeThread rt= new RealtimeThread(prip,perp) {
 public void run() {
 int n=1;
 while (waitForNextPeriod() && (n<100)) {
 System.out.println("Hello "+n);
 n++;
 }
 }
 };

 rt.start();

Realtime Specification for Java: Overview

Garbage Collection in the RTSJ
The RTSJ permit the development of realtime applications,
but

� realtime code must be separated from 'normal' code

� realtime code can use only special memory areas

� No Garbage Collection, danger of memory leaks

� Danger of Priority-Inversion when synchronization with
non-realtime-code

Realtime code can use only a subset of Java features!

Realtime Garbage Collection

Realtime Garbage Collection
All Java-Threads must be realtime threads:

� GC-work is performed at allocation time

� GC-work must be sufficient to recycle enough
memory before free memory is exhausted

� WCET for memory allocation is required

Realtime Garbage Collection

Relaxing Constraints of RTSJ with
Realtime Garbage Collection
The use of realtime garbage collection permits all threads
to access the garbage collected heap.

� No restriction of heap access in realtime code

� Synchronization between realtime and non-realtime
code directly possible

JamaicaVM provides realtime garbage collection.

It was used as the basis for the development in the AERO
project.

RTSJ and Realtime Garbage Collection

AERO-JVM Java Implementation for
Satellite Onboard Software
Developed by a consortium of

� Astrium SAS, France

� aicas GmbH, Germany

� University of Linköping, Sweden

� ESA ESTEC, Netherlends

Work based on JamaicaVM.

Preparation for certification of VM in space domain part
of the project.

AERO-JVM, Java Technology for Onboard SW

Tasks Performed within the AERO
project:

Evaluation of available Java solutions

� Selection of JamaicaVM as basis

Specification of needs for space system

Implementation

� RTSJ support

� testsuite

� Port for ERC32 and Leon target system

� Static GC

Validation

AERO-JVM, Java Technology for Onboard SW

Validation with Space Applications
OBJA Manager

Java-Version of state-of-the-art interpreted procedure
used on Rosetta and E3000 family of telecom
satellites.

Consists of mode manager, monitoring,
reprogrammable mission functions etc.

Attitude Control System algorithms

Orbit propagator

AERO-JVM Validation and Certification

C-Code Coverage

Determined using toolg gcov

raw value: 61.80%
Adjusted value: 84.73%

Acceptable for beta product

Detailed description of all C-routines, that are not
covered or covered only partially

AERO-JVM Validation and Certification

C-Code Coverage

routine covrg. explanation

allocJavaString partial - count argument is always -1 (design)
allocAndInternJavaString partial - Error checking code (Java exception)
catJavaString partial - Error checking code (out of memory)
utf82javaString partial - utf8 argument is never null (design)
c2javaString partial - cstr argument is never null (design)
class2javaString complete
feature2javaString none - Error checking code
feat2javaString partial - feature argument is never null (design)

etc.

AERO-JVM Validation and Certification

Test Suite Results

Testsuite pass fail
AERO tests 1506 0

Jamaica Tests 50309 2

MAUVE tests 5558 79

AERO-JVM Validation and Certification

AERO Project Traceability

Specification defines Requirements

unique id: e.g. REQ/ AERO. RT. SCH. 0020

evaluation method: test / analysis / code inspection

Validation Plan

Describes tests to developed

Design Document

Describes mapping of requirements to source code

Evaluation Document

Validation results

AERO-JVM Validation and Certification

AERO Project Future

First Phase Finished Successfully

Second Phase of the Project is being set up

Goals of second phase

� Further Validation towards certifiability:

� 100% code coverage

� Removal of dead code

� Extension of tests to cover open cases

� First Mission: Proba 2 (launch scheduled for 2005)

AERO-JVM Validation and Certification

Conclusions

The RTSJ specification brings features required for realtime
programming in the Java language.

The combination with realtime garbage collection
overcomes the restrictions of the RTSJ.

Java Implementations that will be certified for use in
safety critical applications are being developed and will
be the next step.

More information:

www.aicas.com www.aero-project.org

Realtime Java and Certification

