
Secure Software Development
Dr. Bruce Sams bruce.sams@optimabit.com

Copyright 2008, OPTIMAbit GmbH



Rettet die Anwendungen!



The Software Development Life Cycle
Software development takes place within a
"Software Development Life Cycle" (SDLC)

Security should be integrated into the SDLC, so that
security is "built in" from the beginning and can be

maintained over the lifetime of the software.

There is no "standard" for the secure SDLC.There is no "standard" for the secure SDLC.

Several attempts at a "standard" have been made, e.g.
CLASP, BSI (Build Security In)

Each company must create a secure SDLC that fits into
their development process (V, RUP, Agile)



Aspects of OPTIMA's secure SDLC



Application Security PolicyApplication Security Policy



Application Security Policy
An application security policy defines, at a high level, what
requirements a secure application must fulfill.

A good policy balances abstract and concrete.

Too abstract (typical security expert document):
"Systems must be protected according to §2.4.3 of ISO/IEC

Copyright OPTIMAbit GmbH 2008

"Systems must be protected according to §2.4.3 of ISO/IEC
27002 ..." (Role based Access Control)

Too concrete (typical Java developer):
"Do not use HttpRequest.isUserInRole("admin") in an
Internet facing servlet under JDK 1.4"



OPTIMA uses a hierarchical policy structure



Defining Security Requirements
Most projects begin with little concrete information about
security requirements.

This is normal, because the focus is on business requirements.

Security Concept (compare to "Fachkonzept")

Copyright OPTIMAbit GmbH 2008

The project managers should be required to create the initial
"security concept" document

Warning: attempts to produce such a document without clear
instructions will result in failure and aggravation on all sides.

Therefore: every company should have a template for the security
concept.



Code ReviewCode Review



All about code review
Fact: Every piece of software can have
errors. Some errors cause security
problems.

Conclusion: If you write software, you
have security problems

Explain what techniques are used in a code
review

Show what kind of problems a review can
identify

Discuss the practical limits of code review

Discuss when a review should be performed
and by whom



Security of Old vs. New Languages

C, C++, Perl Java, C#

Manual memory management

Buffer overflows

Lots of Gotchas, e g. if(x = 1)

Automatic memory management

No buffer overflows

Fewer Gotchas, e.g. if (x == 1)

Copyright OPTIMAbit GmbH 2008

Web applications with browser front ends (JSP, ASP) are
particularly difficult to secure.

Errors/KLOC =~ 1 - 10 Error/KLOC =~ 0.1 - 1



Problem Categories

Category Examples Complexity of
Identification

Conventions naming, formatting 1

Structure cyclomatic complexity, affine/afferent
binding, package dependencies, etc.

2

Implementation null pointer, endless loop, unreachable 2 - 4Implementation null pointer, endless loop, unreachable
code, dangerous API calls

2 - 4

Frameworks Conformity to architecture &
framework requirements.

3 - 4

Security buffer overflow, url encoding,
injection, elevation of privilege,
sessions

4 - 5



Real World Vulnerabilities
Real world vulnerablilies are related to information flow,
not control flow.

Statistics for 500 vulnerability reports from securityfocus

294

60

66

22

Input Validation

Denial of Service

Other

File Include

Copyright OPTIMAbit GmbH 2008

22

15

10

9

8

8

8

0 50 100 150 200 250 300 350

File Include

Authentication Bypass

Temp. File Manipulation

Memory Corruption

Unauthorized Access

Privilege Escalation

Heap Overflow

C
at

eg
or

y

Source: Livshits,
Stanford U.



False Positives
Code review usually produces a lot of false positives that
need to be sorted out by inspection.

int getString(int i) {
String s = null;
switch (i) {

case 1:
s = "one";

Copyright OPTIMAbit GmbH 2008

break;
case 2:

s = "two";
break;

}
return s.length(); //NPE? Depends on allowed range of i

}



Data Flow Analysis
Typical problems in web applications are
related to data flow.

Data from an external source is used without
validating it first.

(Mostly) simple to correct, but the places in code are
sometimes hard to find!

Copyright OPTIMAbit GmbH 2008

sometimes hard to find!



Source/Sink Example: SQL Injection

HttpServletRequest req = …;
String s = req.getParamter("name");
Connection connection = …;
String q = "'SELECT * FROM Users WHERE NAME ='" + s + "'";
Connection.executeQuery(q);

Copyright OPTIMAbit GmbH 2008

Source = Manipulated Information in Request
name = "' OR 1 = 1;--"

Sink = executeQuery



Tracing Tainted Data
"Tainted" data comes from sources
external to the program itself and is
"untrusted".

The call graph can be large:

10 steps with 10 branches gives 1010 nodes.
Servlet.getParameter("name")

String.substring()

Copyright OPTIMAbit GmbH 2008

10 steps with 10 branches gives 10 nodes.

If each node requires 1KB memory to model,
then a model requires 1013 Bytes = 104 GB
RAM.

Hard to solve the general problem
completely.

Servlet.getParameter("name")

String.substring()



Model for Static Analysis in Code
"Sources" of tainted information

Input from a web form

RSS feeds

Web Services

Database Information

"Sinks" where the information is
used in a potentially "dangerous"
way.

DB Queries

File operations

Directory LookupsDatabase Information

…

Directory Lookups

…



Identifying Vulnerabilities
A vulnerability is identified as a place in the code where
tainted information from a Source is delivered to a Sink
with an exploitable weakness.

Sources

Parameter Manipulation

Sinks

SQL Injection

Copyright OPTIMAbit GmbH 2008

Example: Hidden Field Manipulation + Path Traversal = Vulnerability

Hidden Field Manipulation

Cookie Poisoning

Second Order Injection

Cross Site Scripting

HTTP Request Splitting

Path Traversal

Command Injection



Tracing Tainted Information

Servlet.getParameter("name")

Steps through the application

Validator

String.substring()

Servlet.getParameter("name")

Statement.execute
(…)

String.substring()



Problems to watch out for
• False positives (detecting a error when none exists)

• False negatives (not detecting a error when one exists)

• Completeness (how much of the code was tested)

• Deep/Shallow paths (how many steps into the application are
tested)

Copyright OPTIMAbit GmbH 2008

tested)

• Handling dynamic class loading and reflection

• Trying to solve the general problem is VERY hard. What about
solving simpler, less general problems?



How Many Defects are Detected?
A joint project between the
FindBugs Group and Fortify has
analyzed ca. 40 open source
projects.

Typical defect rates are about 0.2
per 1000 LOC.

One tested project (Net Trust, not

Defects per KLOC

0,800

1,000

1,200

1,400

1,600

1,800

One tested project (Net Trust, not
shown on chart) was much higher
(ca 10 Defects/KLOC)

0,000

0,200

0,400

0,600

0,800

To
mca

t (L AT
EST)

Je
tty

Ja
va

Pe tst
ore

2.0
- ea

3

Grid
sp

h ere

Ajax
4J

SF

Peb
ble

Spa
r k

Apa
ch

e Com
mons

JX
Path

Goo
gle

Web
Too

lki
t (G

W
T)

JF
oru

ms

JS
PW

iki

CAS3

Hu ds
o n

Cob
ert

ura

Ha
rm

on
y

Apa
ch

e Com
mon

s Coll e
ctio

ns

Apa
ch

e Com
mon

s Net

Azu
r e

us

Hyp
eri

c

Ja
ck

rab
bi t



False Positives vs. False Negatives
Example: two tools (1 research, 1 commercial) analyzed
the same code base (ca 300K LOC, 4M ExLOC).

The commercial tool is heavily biased toward false negatives.

100

120

Copyright OPTIMAbit GmbH 2008

0

20

40

60

80

100

Vulnerabilities False positives False negatives



Tool Metrics



OPTIMA Bytecode Scanner
Works in bytecode, performs pattern analysis and data
flow analysis.

Is designed to detect the maximum number of security problems,
even at the expense of more false positives.

Allows special modifications for, e.g. validation, that can
"untaint" an object.

Copyright OPTIMAbit GmbH 2008

"untaint" an object.

Offers powerful analysis of cryptography and other special
security topics.

Proven in numerous successful code reviews for large projects

Human analysis is required (!!)



OPTIMA Bytecode Scanner



Strategies for Security Code Review
Do it yourself

Code remains in-house

Build up internal knowledge
(requires training and updates)

Integrate into build process

Outsource to specialists

Specialists have more experience

Specialists use multiple tools

Cheaper ? (licenses and
manpower)

Easy to do "quick" reviews Easy to plan resources (time and
manpower) for a review

OPTIMA offers code review as a service.
Fast, accurate, reliable, plannable, consistent



Conclusions
Static analysis can be complex, particularly if

the path depth is high and has many branches

the pointer and context analysis is complex

many maps are used

Copyright OPTIMAbit GmbH 2008

Dynamic classes & reflection play an important role



Conclusions
The secure SDLC is a reality, and can substantially
improve the security of software development.

There is no Out Of The Box process, because the
development process varies from company to company.

Customizing the process requires sensible policies and

Copyright OPTIMAbit GmbH 2008

Customizing the process requires sensible policies and
templates that are developer friendly

Code Review is a crucial aspect of the SDLC, but
performing an in-depth review is hard to do.


