
1

Making Effective Use of
Java in Real-Time Systems

Kelvin Nilsen, CTO

2

Presenter Background
• 1988: Completed Ph.D. research on high-level

programming of real-time systems
– Published real-time garbage collection paper in Software

Practice & Experience (July 1988)
• 1988-1996: Research and instructional faculty at

Iowa State University, focusing on programming
language design and implementation for real-time
software

• 1996-2003: Founded NewMonics to develop and
market real-time virtual machine products, acquired
by Aonix
– Original architect and designer of PERC product
– Contributor to NIST Requirements for Real-Time Java

3

Presenter Background

• 2003-current: CTO of Aonix, combining
strengths of Ada, safety-certified run-time
kernels, modeling tools, and real-time virtual
machines

– Key contributor to Open Group standardization of
mission-critical and safety-critical Java
specifications

– Architect and designer of JRTK and JRaven
products

4

Productivity Benefits of Java

• Many experiments have concluded that Java
developers are at least twice as productive as C or
C++ developers. Why?
– Stronger type checking reduces programmer errors
– Object-oriented encapsulation reduces interference between

independently developed components
– Forced exception handling reduces programmer errors
– Automatic garbage collection simplifies memory

management and reduces programmer errors
– Simpler language reduces programmer misunderstandings
– Improved portability allows programmers to master the

language, rather than mastering particular tool chains and
RTOS services

5

Productivity benefits of Java

• Many developers have found they are 5-10 times more
productive integrating independently developed Java
components than C or C++ components. Why?
– Improved portability eliminates the need to “port”

components to each new hardware or operating system
– Object-oriented abstractions reduce name collisions and

other interference between components
– Automatic garbage collection simplifies integration by

eliminating need to assign responsibility for reclaiming
memory used by one component but allocated by another

– Summary: components simply work “out of the box”

6

Representative experience

• Intel project: developed fault-tolerant distributed Java
application in 3 days! Their assessment: “It would have
taken three solid months to develop this demonstration
without Java [i.e. VxWorks and C]”

• Calix customer experience report: Compared with C, the
PERC real-time Java product increased developer
productivity by two fold (including the time required to learn
Java!), reduced code size to one fifth.

• Nortel experience: Java developers are more productive and
their code more trouble-free than C++ developers.

• Trillium (now part of Continuous Computing) experience:
Sells (sold) reusable network protocol stacks as C and C++
libraries. Each “product sale” was bundled with an engineer
who went on-site for several weeks to assist with the
integration!

7

What is the Java Phenomenon?

Usage Trends of the 8 Most Popular Programming Languages
“An Empirical Study of Programming Language Trends”, Chen, Dios, Mili, Wu, Wang
IEEE Software, May/June 2005

8

Predictive Model Correlations

• Top Intrinsic Factors (statistical correlations)
– Machine independence (portability) (0.8876)
– Extensibility (scalability) (0.7625)
– Generality (scalability) (0.6913)
– Simplicity (-0.4703)
– Implementability (-0.3390)
– Reliability (scalability) (0.3199)

9

Why Java for embedded development?

• Top seven stated reasons:
– Reduced development costs (38%)
– Availability of open-source objects and modules (30%)
– Quicker development (29%)
– Availability of qualified developers (21%)
– Improved software reuse (19%)
– Increased system functionality (18%)
– Reduced maintenance costs (18%)

Source: Embedded Market Forecasters (2005) (108 total responses)

10

A Soft Real-Time Profile

• Uses real-time garbage collection and J2SE APIs
– Typical applications enforce time constraints of 1-100 ms

• The most mature approach to real-time execution of Java
software, commercially available since 1997

• The easiest development, maintenance, and reuse of COTS
and open-source Java components

• The only approach with proven commercial deployments:
– Thousands of commercially deployed devices
– Millions of hours of field-proven 5-9’s reliability

• Currently supported by Aicas and Aonix. IBM and Sun claim
future support

11

XataNet™ Fleet Telematics Application

• Real-time constrains
sensor monitoring and
wireless communication

• Regulatory reporting
(government certification
of algorithms)

• Engine and cargo
diagnostic warnings

• Wireless communication
with central office

12

Calix C7 Broadband Loop Carrier

• Replaced C management plane with Java: better code
reuse (5x), improved developer productivity (2x),
fewer bugs, and more flexible architecture

• As of 1st quarter 2005, had shipped 6,500 units to
190 service providers, supporting 1.2 million
communication “ports”

• Industry segment market leader, 8 quarters running

13

Nortel Fiber-Optic Switch Design
• Optera Connect HDX is Nortel’s

top-of-the-line long-haul fiber
optic switch for connecting large
metropolitan areas

• Java runs on every line card and on
redundant shelf controllers (Power
PC with VxWorks operating
system)
– Management plane consists of

about 1 million lines of Java code
– Control plane consists of

approximately 4 million lines of
legacy C code

• SONET fiber communication
protocol has timing constraints of
approximately 40 ms

http://www.aonix.com/perc.html

14

TV Broadcasting by Rohde & Schwarz

• Java supports remote:
– monitoring
– configuration
– provisioning.

15

Boeing J-UCAS X-45C Unmanned Aircraft

• Joint software development effort between Boeing and BAE
• Mission planning software implemented in Java
• Mission plan is continually updated to account for weather,

fuel levels, weapons deployment status, enemy activities, and
evolving objectives

• BAE characterization: “solve the traveling salesman problem
in real time”

16

French Military FELIN Project by Sagem

• Heads-up digital assistant supports:
– Communication with other soldiers and with commanders
– Map information, including known enemy positions and movements
– Video streaming from other soldier perspectives

• Implementation uses real-time execution of Java

17

Real-Time GC

• Key attributes of real-time GC:
– Preemptive
– Incremental
– Fully accurate
– Defragmenting
– Paced

18

Trace of Garbage Collection Pacing

Real Time (seconds)

10

20

30

20%

40%

60%

80%

100%

550 700650600

Preemption of GC by higher priority
non-Java threads

Preemption of GC by higher
Priority Java threads

19

Classic VM running VM Response Test

VM Response Test

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

300 Samples

D
el

ay
 (m

ill
is

)

Classic VM Customers have
reported rare garbage
collection delays of up

to 30 seconds with
gigabyte heap sizes

20

Real-Time VM running VM Response Test

VM Response Test

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

300 Samples

D
el

ay
 (m

ill
is

)

PERC

21

Scheduling and Synchronization

• Implement the same portable real-time
scheduling and synchronization semantics for
all platforms: Integrity, Linux, LynxOS, OSE,
VxWorks, Windows, QNX, others
– Fixed priority, preemptive scheduling under full

programmer control – no automatic priority aging
– Priority inheritance for all Java synchronization
– All queues maintained in priority order

22

VM Management Services

• Status inquiries reveal:
– CPU time consumed by each thread
– Memory allocation rates
– Total heap memory usage
– Length of finalization queue
– CPU time spent in garbage collection
– Memory reclaimed by garbage collection

• Management API controls:
– Priorities for garbage collection and finalization
– Size of the heap (enlarge and shrink)

23

Summary of Soft Real-Time Java

• Using standard-edition Java APIs with special implementation
techniques is the only commercially proven approach:
– Thousands of successfully deployed systems
– Millions of hours of proven 5-9’s and higher reliability
– Ease of development, portability, maintainability, scalability
– Full access to COTS Java components
– Improved developer productivity (2 fold improvement during

development, 5-10 fold improvement during maintenance and
integration, in comparison to C++)

• Performance comparable to C++ for the large, complex,
dynamic applications to which it is best suited

• GC preemption latency of approximately 100 µs
• Typical periodic execution frequencies of 10-100 Hz

24

Why NOT use Java for embedded development?

• Top five stated reasons:
– Run-time speed too slow (35%)
– Lack of staff Java expertise (28%)
– Memory requirements are large (26%)
– Inability to satisfy hard real-time constraints (24%)
– Inability to perform low-level operations, such as

device I/O (18%)

Source: Embedded Market Forecasters (2005) (439 total responses)

25

Horses for Courses

stop

Use hard real-time
Java guidelines

hard real-time
constraints?

high throughput
requirements?

severe memory
constraints?

start

Use safety-critical
Java guidelines

safety certification
requirements?

Use soft real-time
Java guidelines

yes

yes

yes

yes

no

no

no

no

26

Preliminary Hard Real Time Performance

JRTK performance vs. C Java HotSpot
Sieve (standalone) 1.20 3.07

Sieve (CaffeineMark) 0.90 1.48

Loop (CaffeineMark) 1.14 3.26

Logic (CaffeineMark) 0.65 1.48

Method (CaffeineMark) 0.71 1.08

Note: most other real-time Java technologies
(including PERC and Mackinac) run slower than
traditional Java

27

A Hard Real-Time Profile
• No garbage collection
• Establish standard subset of RTSJ and J2SE

– Improved portability
– Improved efficiency (avoids costly features that are not relevant to

hard real-time niche)
• Establish standard library extensions

– Device I/O and interrupt handling
– Passive and active real-time clocks

• Java 5.0 standardized meta-data annotations clarify
programmer intentions and enable modular composition of
components

• Compile-time enforcement of scoped-memory abstractions
– Fewer programmer and integration errors, improved reliability
– Higher performance and smaller memory footprint
– Straightforward and reliable integration of components

28

The Development Environment

Vanil la Java
Source Files with

Augmented
.class Files

Portable
C Source Files

Java .class
Files

Eclipse

Eclipse
Javac

JRTK
builder

Eclipse
ANT

C tools
compile/link

Native Runtime
Object Files

Executable
JRTK Program

RTSJ
.class files

JRTK
verif ier

JRTK
translator

JRTK
debugger

RTSJ
translatorReal-Time Annotations

29

The Development Environment

Vanil la Java
Source Files with

Augmented
.class Files

Portable
C Source Files

Java .class
Files

Eclipse

Eclipse
Javac

JRTK
builder

Eclipse
ANT

C tools
compile/link

Native Runtime
Object Files

Executable
JRTK Program

RTSJ
.class files

JRTK
verif ier

JRTK
translator

JRTK
debugger

RTSJ
translatorReal-Time Annotations

Portable,
Scalable,

Maintainable

Non-Portable,
Non-Scalable,
Unmaintainable

30

The Thread Stack Model

Initially, the run-time stack (grows downward) for the main
thread represents all non-immortal memory.

31

The Thread Stack Model

The main thread may spawn additional threads, setting aside
part of its own stack to represent the stack memory for the
spawned threads.

Any of the spawned threads may in turn carve up its stack
in order to spawn “grandchildren” threads.

Memory for first spawned thread’s stack

Memory for third spawned thread’s stack

Memory for second spawned thread’s stack

32

The Thread Stack Model

Individual threads populate their run-time stacks as appropriate.

Each thread’s scoped objects can see scoped objects allocated
In more outer-nested scopes of the same thread.

And a child thread may see scoped objects that reside in the
parent thread’s stack above the point at which the child thread
was spawned.

But objects residing in the parent thread’s stack below the point
from which the child thread was spawned are not visible to the
child thread. And outer-nested objects are not allowed to see
objects residing in more inner-nested scopes.

33

The Thread Stack Model

The parent thread is required to join with its spawned threads
before returning from the context from which it spawned those
threads..

Th
re

ad
-1

Th
re

ad
-3

Th
re

ad
-2

After the child threads have joined with the parent thread,
their memory is fully reclaimed (and defragmented).

34

Sample Stack Allocation
[1] package samples;
[2]
[3] import javax.realtime.util.sc.*;
[4]
[5] public class Complex {
[6] public float real, imaginary;
[7]
[8] public @ScopedThis Complex(float r, float i) {
[9] real = r;
[10] imaginary = i;
[11] }
[12]
[13] public @CallerAllocatedResult @ScopedPure Complex add(Complex arg)
[14] {
[15] float r, i;
[16] r = this.real + arg.real;
[17] i = this.imaginary + arg.imaginary;
[18] return new Complex(r, i);
[19] }

35

Sample Stack Allocation

[21] public @CallerAllocatedResult @ScopedPure
Complex multiply(Complex arg)

[22] {
[23] float r, i;
[24]
[25] r = this.real * arg.real - this.imaginary * arg.imaginary;
[26] i = this.real * arg.imaginary + this.imaginary * arg.real;
[27] return new Complex(r, i);
[28] }
[29] }

36

@StaticAnalyzable

• Programmers may annotate any method or interface
to declare that important attributes of its behavior
must be verifiable
– Execution time
– Stack growth
– Immortal memory allocation

• Special byte-code verifier assures that programmer
follows conventions required to enable static
verification

• This annotation is inherited to any overriding
methods in subclasses

37

Annotated Program (1/3)
[1] import javax.realtime.util.sc.StaticAnalyzable;
[2] import javax.realtime.util.sc.Stackable;
[3] import javax.realtime.util.sc.StaticLimit;
[4]
[5] public class BubbleSort {
[6] public enum AnalysisModes
[7] { UNBOUNDED, // can’t analyze the most general case
[8] SMALL, // array smaller than 16 elements
[9] BIG, // array up to 64 elements
[10] SMALL_SORTED, // small array, one element out of order
[11] BIG_SORTED // big array, one element out of order
[12] }
[13] @StaticAnalyzable(
[14] enforce_analysis = { false, true, true, true, true },
[15] modes = AnalysisModes.class)
[15] public void sort(@Scoped int a[]) {
[16] int i, j, k, t;
[17] int len = a.length;
[18] boolean sorted = false;

38

Annotated Program (2/3)

[19] for (i = 0, k = len; !sorted && (i < len); i++) {
[20] assert StaticLimit.IterationBound(AnalysisModes.SMALL, 16);
[21] assert StaticLimit.IterationBound(AnalysisModes.BIG, 64);
[22] assert StaticLimit.IterationBound(

AnalysisModes.SMALL_SORTED, 2);
[23] assert StaticLimit.IterationBound(

AnalysisModes.BIG_SORTED, 2);
[24] k--;
[25] sorted = true;// assume array is sorted
[26] for (j = 0; j < k; j++) {

// Missing assertions
[31] if (a[i] < a[j]) {

// Missing assertions
[36] t = a[i]; a[i] = a[j]; a[j] = t; sorted = false;
[37] }
[38] }
[39] }

39

Annotated Program (3/3)

[26]for (j = 0; j < k; j++) {
[27] assert StaticLimit.NestedIterationBound(SMALL, 1, 120);
[28] assert StaticLimit.NestedIterationBound(BIG, 1, 2016);
[29] assert StaticLimit.NestedIterationBound(SMALL_SORTED,1, 29);
[30] assert StaticLimit.NestedIterationBound(BIG_SORTED, 1, 125);
[31] if (a[i] < a[j]) {
[32] assert StaticLimit.NestedIterationBound(SMALL_SORTED,
[33] 1, 15);
[34] assert StaticLimit.NestedIterationBound(BIG_SORTED,
[35] 1, 63);
[36] t = a[i]; a[i] = a[j]; a[j] = t; sorted = false;
[37] }
[38] }

40

Future Combat Systems SOSCOE

• System of Systems Common Operating Environment
– Supports multiple configurations, and
– Programming in Ada, C, C++, and Java

41

Future Combat Systems SOSCOE

• System of Systems Common Operating Environment
– All configurations support modular composition of components,

portability, and integration of COTS components. Multiple
configurations must coexist on same processor

42

Future Combat Systems SOSCOE

• System of Systems Common Operating Environment
– Soft real-time configuration supports 20 Hz activities on Linux and/or

Windows

43

Future Combat Systems SOSCOE

• System of Systems Common Operating Environment
– Real-time configuration supports 200+ Hz activities on Integrity,

LynxOS, VxWorks

44

Future Combat Systems SOSCOE

• System of Systems Common Operating Environment
– Mobile configuration runs on COTS PDA devices

45

Future Combat Systems SOSCOE

• System of Systems Common Operating Environment
– Micro configuration runs in severely constrained environments, includes

power management capabilities, and runs with very limited or no RTOS
support

46

Cooperating HRT Components

PERC Pico Hard
Real-Time

Execution Engine

PERC Ultra Virtual Machine

47

TraditionalJava Registry

TraditionalJava

TraditionalJava.publish(“deviceXYZ”, x)

48

TraditionalJava Registry

“Hard Real-Time Domain”

HardRealTimeDomain.lookup(“deviceXYZ”)

49

Resource Material
• Guidelines for Scalable Java Development of Real-

Time Systems, Kelvin Nilsen, Ph.D., CTO, Aonix
– Based on standardization discussions within the Open

Group Real-Time and Embedded Forum
– A foundation for the European Space Agency’s guidelines

for Java development of real-time software

• See http://research.aonix.com/jsc/index.html and
http://research.aonix.com/jsc/rtjava.guidelines.3-28-06.pdf

• For RTSJ background, see https://rtsj.dev.java.net/

http://research.aonix.com/jsc/index.html
http://research.aonix.com/jsc/rtjava.guidelines.3-28-06.pdf
https://rtsj.dev.java.net/

50

Summary
• Real-Time Java offers significant productivity

benefits during development and maintenance
– More projects complete on schedule, within budget
– More features can be added under same budget
– More time available for quality assurance and performance

tuning
– Resulting systems are more reliable and more flexible

• Exploiting the benefits of real-time Java requires
careful selection of the most appropriate tools for
each specific job

	Presenter Background
	Presenter Background
	Productivity Benefits of Java
	Productivity benefits of Java
	Representative experience
	What is the Java Phenomenon?
	Predictive Model Correlations
	Why Java for embedded development?
	A Soft Real-Time Profile
	XataNet Fleet Telematics Application
	Calix C7 Broadband Loop Carrier
	Nortel Fiber-Optic Switch Design
	TV Broadcasting by Rohde & Schwarz
	Boeing J-UCAS X-45C Unmanned Aircraft
	French Military FELIN Project by Sagem
	Real-Time GC
	Trace of Garbage Collection Pacing
	Classic VM running VM Response Test
	Real-Time VM running VM Response Test
	Scheduling and Synchronization
	VM Management Services
	Summary of Soft Real-Time Java
	Why NOT use Java for embedded development?
	Horses for Courses
	Preliminary Hard Real Time Performance
	A Hard Real-Time Profile
	The Development Environment
	The Development Environment
	The Thread Stack Model
	The Thread Stack Model
	The Thread Stack Model
	The Thread Stack Model
	Sample Stack Allocation
	Sample Stack Allocation
	@StaticAnalyzable
	Annotated Program (1/3)
	Annotated Program (2/3)
	Annotated Program (3/3)
	Future Combat Systems SOSCOE
	Future Combat Systems SOSCOE
	Future Combat Systems SOSCOE
	Future Combat Systems SOSCOE
	Future Combat Systems SOSCOE
	Future Combat Systems SOSCOE
	Cooperating HRT Components
	TraditionalJava Registry
	TraditionalJava Registry
	Resource Material
	Summary

