
© 2006 IBM | Made available under the EPL v1.0 | June 2006

Season’s recipes for your text editor

Tom Eicher
IBM Eclipse Team

Text Editor Recipes

2 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Goal: Rich Source Code Editor

3 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Outline

 Architecture overview
 Where does RCP come in?

 Create a Text Editor
 No Java™ code needed initially

 Check out all the stuff we got for free!

 Add features:

 Syntax highlighting
 Partitioning

 Q & A

4 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Overview of the Architectural Layers (1/4)

Document Infrastructure

File Buffers
Source Viewer

Text Editor

IDE Integration

Eclipse Java EditorEclipse Text Editor

Optional RCP Plug-ins
JFace Text

5 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Overview of the Architectural Layers (2/4)

 Document Infrastructure
 Text manipulation through text edits

 Positions

 Find/replace

 Line tracking

 Source Viewer Framework
 TextViewer, SourceViewer and

SourceViewerConfiguration

 Concept of annotations, hovers

 Content assist

 Syntax highlighting

 Reconciler

6 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Overview of the Architectural Layers (3/4)

 Text Editor Framework
 Leverages source viewer framework inside editor part and

workbench

 AbstractTextEditor

 No concrete editor is provided

 IDE Integration
 AbstractDecoratedTextEditor

 Uses file buffers and resource model

 Introduces shared text editor preferences

 Default Text Editor
 Default text editor for Eclipse SDK

 Simple editor for editing and annotating text documents

7 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Overview of the Architectural Layers (4/4)

 File Buffers
 A file buffer represents a file that is being modified over time

 Clients can share a file buffer

 File buffers provide access to

 a content model: IDocument

 a marker model: IAnnotationModel

 Provided for workspace files (IFile) and external files
(java.io.File)

8 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Contribute a Text Editor

 Contribute an editor by re-using existing implementations
 Needs some searching around

 Get the dependencies right

 Existing editor class: TextEditor

 Need to provide an icon

 Connect the menu and tool bar
 Existing implementation: TextEditorActionContributor

9 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Create Our Own Editor Class

 Text editor hierarchy
 TextEditor

 the default Eclipse text editor

 AbstractDecoratedTextEditor

 Rulers, line numbers, quick diff, …
 Support for General > Editors > Text Editors preferences

 AbstractTextEditor

 Find/Replace, URL hyperlink navigation, …
 RCP

13 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Source Viewer Configuration

 Bundles the configuration space of a source viewer
 Presentation reconciler (syntax coloring)

 Content assist

 Hovers

 Formatter

 ...

 Many features can be provided separately for each partition type

16 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Adding Syntax Coloring: Viewer Configuration
public class ExampleSourceViewerConfiguration {
…
 IPresentationReconciler getPresentationReconciler(ISourceViewer viewer) {

 return IPresentationReconciler;
 }
}

IPresentationReconciler

PresentationReconciler

IPresentationDamager

IPresentationRepairer

DefaultDamagerRepairerITokenScanner

17 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Adding Syntax Coloring: Presentation Reconciler
public class ExampleSourceViewerConfiguration {

…
 IPresentationReconciler getPresentationReconciler(ISourceViewer viewer) {

 PresentationReconciler reconciler= new PresentationReconciler();
 DefaultDamagerRepairer dflt= new DefaultDamagerRepairer(createScanner());
 reconciler.setDamager(dflt, IDocument.DEFAULT_CONTENT_TYPE);

 reconciler.setRepairer(dflt, IDocument.DEFAULT_CONTENT_TYPE);
 return reconciler;
}

}

ITokenScanner

RuleBasedScanner

BufferedRuleBasedScanner

IRule

WordRuleNumberRule PredicateRule

18 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Adding Syntax Coloring: Token Scanner

public class ExampleSourceViewerConfiguration {
…

 private ITokenScanner createScanner() {
 RuleBasedScanner scanner= new RuleBasedScanner();
 scanner.setRules(createRules());
 return scanner;
}

private IRule[] createRules() {
 IToken tokenA= new Token(new TextAttribute(getBlueColor());
 IToken tokenB= new Token(new TextAttribute(getGrayColor());

 return new IRule[] {
 new PatternRule(">", "<", tokenA, '\\', false),
 new EndOfLineRule("-- ", tokenB)
 };
}

}

19 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

IDocument

/**
 * Javadoc.
 */
class Editor {
 /*
 * Multiline comment.
 */
 String field= "42";
}

/**
 * Javadoc.
 */
class Editor {
 /*
 * Multiline comment.
 */
 String field= "42";
}

The IDocument Text Model

 Sequence of characters
 Supports random access and replace

 Event notifications via IDocumentListener

 Sequence of lines
 Query by offset and line number

 Positions
 Ranges that are adjusted to modifications

 IPositionUpdater strategies handles overlapping changes

 Partitions
 Slice the document into segments of the same content type

 Domain model dependent

/**
 * Javadoc.
 */
class Editor {
 /*
 * Multiline comment.
 */
 String field= "42";
}

/** * Javadoc.
 */ class Edit
or { /* *
Multiline comme
nt. */ Str
ing field= "42"
; }

20 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Document Partitioning

 Partitioning is a semantic view onto the document
 each partition has a content type

 each character of a document belongs to a partition

 documents support multiple partitionings

 partitioning is always up-to-date

 Often source viewer configuration is based on content types
 syntax coloring

 model reconcilers

 hovers

 double click strategy

21 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Document Partitioning

 Document provider should ensure that needed partitionings
are installed

 Document setup can also be managed by the file buffer
manager

 participate in the document setup process of the file buffer
manager

 File buffer document setup should only be used if the
partitioning is considered of interest for non-UI clients. It
should not contribute the default partitioning

25 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Where Do Documents Come From? (1/2)

 Each editor is connected to a document provider which is
normally shared between editors

 Document Provider
 maps editor inputs to documents and annotation models

 tracks and communicates changes to the editor inputs into
editor understandable events (IElementChangeListener)

 manages save, dirty state, modification stamps, encoding

 provides uniform access to editor inputs and their underlying
elements

interface ITextEditor extends IEditorPart {
…
 IDocumentProvider getDocumentProvider();
}

26 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Where Do Documents Come From? (2/2)

 File buffers
 provide access to file document and annotation model

 can be used headless i.e. no editor or document provider
needed

 important step is to call connect(…) and disconnect(…)

ITextFileBufferManager mgr= FileBuffers.getTextFileBufferManager();
mgr.connect(IPath, getProgressMonitor());
ITextFileBuffer fileBuffer= mgr.getTextFileBuffer(location);
IDocument document= fileBuffer.getDocument();
IDocument document= fileBuffer.getAnnotationModel();

29 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Configuration Areas

 Editor superclass
 RCP vs. IDE

 Editor action bar contributor
 use existing class as is

 Source viewer configuration
 syntax coloring, hovers, content assist...

 Text model
 partitioning

 domain model

32 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Text Editors in a RCP

 Text editors are considered optional RCP plug-ins
 not part of the RCP download/distribution

 org.eclipse.text

 org.eclipse.jface.text

 org.eclipse.ui.workbench.texteditor

 Why is org.eclipse.ui.editors not part of it?
 depends on org.eclipse.ui.ide which drags in UI layout

and elements

34 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Tips & Tricks

 Don't forget the action contributor

 Set key binding context

 Source viewer configuration and document must use the
same partitioning

35 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Eclipse 3.3 Outlook

 Push down more features from JDT Text to Platform Text
 extended template support (typed variables)

 spell checking (finally)

 Complete text editing feature set
 triple-click, 1.5-click

 More extensibility
 contributable rulers

 hyperlink extension point

36 Text Editor Recipes | © 2006 IBM | Made available under the EPL v1.0

Thank You – Questions

Legal Notices

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

