
Daedalos International, Copyright © 2000 – 2001 1

Introducing eXtreme Programming
A new discipline of software development

Daedalos International, Copyright © 2000 – 2001

Daedalos International, Copyright © 2000 – 2001 2

2

"If you knew that your customer could afford only one day of
software development, what would you do different? …

especially if, by doing something different, he might be able to
afford yet another day of software development"

Daedalos International, Copyright © 2000 – 2001 3

3

What is Extreme Programming?

• A discipline of program development.
It relies on:

– automated tests
– oral communication
– a gradual design process
– an incremental planning approach
– close collaboration of ordinary programmers
– use of "instinctive" practices

its reliance on automated tests written by developers and customers to monitor
the progress of development and allow the system to evolve
its reliance on oral communication and source code instead of written
documentation,
its reliance on a gradual design process that lasts as long as the system lasts,
its incremental planning approach that quickly comes up with an overall plan
which is expected to evolve through the life of the project,
its reliance on the close collaboration of programmers with ordinary skills,
its reliance on practices that work with the short-term instincts of developers
I say that this is the short answer, because I don’t like the word „methodology“. I
prefer to call XP a discipline of software development. It is a discipline because
there are certain things that you have to do to be doing XP. You don’t get to
choose whether or not you will write tests- if you don’t, you aren’t extreme, end of
discussion.

Daedalos International, Copyright © 2000 – 2001 4

4

The Basic Problems - The XP
Answers

• Schedule slips - short delivery cycles
• Project cancelled - the smallest release that makes the most

business sense
• System goes sour - comprehensive suite of tests
• Defect rate -

– developers write tests method-by-method and
– customers write tests program feature-by-program feature.

• Business misunderstood - customer is part of the team
• Business changes - shortens the delivery cycle
• Staff Fluctuation - developers accept responsibility for

estimating and completing their own work. There is less chance
for a developer to get frustrated by management incompetence.

Schedule slips- short delivery cycles, scope of any slip is limited. 2-4 week
customer-visible iterations give finer grained feedback about progress.
Project cancelled - choose the smallest release that makes the most business
sense, less to go wrong before going into production, software value is greatest.
System goes sour- creates and maintains a comprehensive suite of tests to ensure
quality baseline. continual evolution of design so the cost of maintenance never
rises sharply.
Defect rate- XP tests from the perspective of both developers writing tests method-
by-method and customers writing tests program feature-by-program feature.
Business misunderstood- customer is an integral part of the development team.
The specification of the project is continuously refined as development continues,
Business changes- shortens the delivery cycle, so there is less change during the
development of a single release. During a release, the customer is welcome to
substitute new functionality for functionality not yet developed.
Turnover- XP asks developers to accept responsibility for estimating and
completing their own work, and honors those estimates. The rules are clear. So,
there is less chance for a developer to get frustrated by management
incompetence. XP also encourages human contact among the team, reducing the
loneliness that is often at the heart of job dissatisfaction. Finally, XP incorporates
an explicit model of turnover. New team members are encouraged to gradually
accept more and more responsibility, and are assisted along the way by each other
and by more senior developers.

Daedalos International, Copyright © 2000 – 2001 5

5

How to do it

Extreme Programming

• Focus: simplicity

• Build for NOW

• Customers specify,
Developers estimate

• Self management

Our Rules

• Do the simplest thing that could
possibly work

• You ain’t gonna need it (YAGNI)

• Planning Game,
Iteration Planning

• Release Plan,
Project Values

Daedalos International, Copyright © 2000 – 2001 6

6

Responsibilities

Customer
• Need
• Stories
• Resources
• Priorities
• Acceptance

Developer
• Time estimates
• Design
• Code
• Quality

Daedalos International, Copyright © 2000 – 2001 7

7

What they need to know

Customer

• How long
• What’s done
• How good

Developer

• What to do
• When to do it
• When done

Daedalos International, Copyright © 2000 – 2001 8

The Economics of XP

The business story

Daedalos International, Copyright © 2000 – 2001

Daedalos International, Copyright © 2000 – 2001 9

9

How to increase project value

• Push investment out so you don’t have to pay so much interest
and you are less likely to have to pay

• Pull revenue in so that you get more interest and you are more
like to receive the money

• Increase the chances of survival

There are three ways you can increase the overall value of a project analyzed with
this model:

Push investment out so you don’t have to pay so much interest and you
are less likely to have to pay
Pull revenue in so that you get more interest and you are more like to
receive the money
Increase the chances of survival

Sometimes you can combine the strategies. For example, you can split a project
into phases, which simultaneously pushes some of the investment into the future,
pulls some of the payback closer, and increases the chance of the project
surviving.
This model is by no means complete. The biggest cost of the risk of software
development is not the money that you may or may not make. Often, the cost of
risk is dominated by the cost of the lost opportunities. You are sure you’re new
system will be in production in a year, so you stop developing the old system. By
the time it is obvious that the new system isn’t going to ship, the old system is so
far behind the competition that you have lost a significant share of the market.

Daedalos International, Copyright © 2000 – 2001 10

10

Economic Strategy of XP

• You would like to invest money gradually, over time, rather than
all at once.

• You would like to begin earning a payback from the system
sooner rather than later.

• Above all, you should do anything possible to reduce the risk
that the development will fail, since improving the mortality curve
has the greatest effect on the value of the project.

However, the model makes a few pieces of strategy clear:
You would like to invest money gradually, over time, rather than all at once.
You would like to begin earning a payback from the system sooner rather than
later.
Above all, you should do anything possible to reduce the risk that the development
will fail, since improving the mortality curve has the greatest effect on the value of
the project.
At the limit, designing a software process with this model would lead to a project
that went into production at the end of its first day. Each day you would invest a
little and get a little more in return. Each day you would review the direction of the
project, to be sure that you were always creating the most possible value.
You wouldn’t develop blindly, though, thinking only of today. You would develop
with an eye towards balancing the economics of today with the economics of the
indefinite future.
Every day you would examine the investment you were about to make compared
with the returns you were to get. The day you made more money by stopping
development, you would stop.
The real world is far more complex. No top manager is willing to review a software
project every day.

Daedalos International, Copyright © 2000 – 2001 11

11

Four Variables

Resources

Scope

Time Quality

The way the software development game is played is that external forces
(customers, managers) get to pick the values of three of the variables. The
development team gets to pick the resultant value of the fourth variable.
Some managers and customers believe they can pick the value of all four
variables. „You are GOING to get all these requirements done by the first of next
month with exactly this team. And quality is job one here, so it will be up to our
usual standards.“ When this happens, quality always goes out the window (this is
generally up to the usual standards, though), since nobody does good work under
too much stress. Also likely to go out of control is time. You get crappy software
late.
The solution is to make the four variables visible. If everyone, developers,
customers, and managers, can see all four variables, they can consciously choose
which variables to control. If they don’t like the result implied for the fourth
variable, they can change the inputs, or they can pick a different three variables to
control.

Daedalos International, Copyright © 2000 – 2001 12

12

Cost of Change

then

now

time

co
st

Daedalos International, Copyright © 2000 – 2001 13

13

Cost of Change

This curve is based on experimental evidence -
of 30 years ago!

$1 $10 $100 $1000 $10000 $100000
Requirements Analysis Design Implementation Testing Production

$1 $3 $5 $30 $30
Day 1 Week 1 Month 1 Year 1 Decade 1

This is one of the basic premises of XP - if the cost of change rose slowly
over time, you would act completely differently than if it rose exponentially

Daedalos International, Copyright © 2000 – 2001 14

14

Change is Easy

• automation simplifies tasks
• modularity limits impact
• tests detect mistakes
• change enables further change
• practice makes perfect

Daedalos International, Copyright © 2000 – 2001 15

15

Basic Principles

• Coding -- to have something
• Testing -- to know when done
• Listening -- to have things of value
• Refactoring -- to continue forever

"Listening, Testing, Coding, Refactoring.
That's all there is to software.
Anyone who tells you different is selling something."
- Kent Beck

What are the things that absolutely matter?
You code because if you don’t code, if at the end of the day, if the program doesn't
run and make money for your client, you haven’t done anything.
You test because if you don’t test, you don’t know when you are done coding. If
you're smart, you'll write them first so you'll know the instant you're done.
Otherwise, you're stuck thinking you maybe might be done, but knowing you're
probably not, but you're not sure how close you are.
You listen because if you don’t listen you don’t know what to code or what to test.
You don't know the numbers yourself, so you have to get good at listening to
clients - users, managers, and business people.
You have to take what your program tells you about how it wants to be structured
and feed it back into the program. Otherwise, you'll sink under the weight of your
own guesses.

Daedalos International, Copyright © 2000 – 2001 16

The Four Basic Values

Communication, Simplicity, Feedback and Courage

Daedalos International, Copyright © 2000 – 2001

Daedalos International, Copyright © 2000 – 2001 17

17

Communication comes from:

• User Stories
• Release Plannng
• Iteration Planning
• CRC Card design
• Pair Programming
• Continuous Integration
• Listening to what the objects tell you

Daedalos International, Copyright © 2000 – 2001 18

18

Communication leads to:

• Higher quality software
• Better business understanding
• Risk reduction through early recognition of problems
• Team building
• Shared knowledge

Daedalos International, Copyright © 2000 – 2001 19

19

Simplicity comes from:

• Do the simplest thing that could possibly work
• Refactor mercilessly
• You ain’t gonna need it
• Spike solution
• Supported by: Worst things first

Daedalos International, Copyright © 2000 – 2001 20

20

Simplicity leads to:

• Better understandable code
• Easy modification
• Confidence in the system

Daedalos International, Copyright © 2000 – 2001 21

21

Feedback comes from:

• Continuous Integration
• Relentless Testing

- Unit Tests
- Functional Tests

• Customer on site
• Iteration Planning
• Pair Programming

Daedalos International, Copyright © 2000 – 2001 22

22

Feedback leads to:

• Early problem recognition
• Better quality software
• Self-confident programmers

Daedalos International, Copyright © 2000 – 2001 23

23

Courage comes from:

• Continuous Integration
• Relentless Testing
• Pair Programming
• Success

Daedalos International, Copyright © 2000 – 2001 24

24

Courage leads to:

• Refactoring Mercilessly
• Collective Code Ownership
• Honest time estimation
• Experimental implementation (Spike solution)
• Honest communication

Daedalos International, Copyright © 2000 – 2001 25

The Practices

Daedalos International, Copyright © 2000 – 2001

Daedalos International, Copyright © 2000 – 2001 26

26

Mutual Support

on-site customer

planning game40-hour week

short releases

continuous integration

collective ownership

coding standards

pair programming testing

refactoring

metaphor

simple design

Daedalos International, Copyright © 2000 – 2001 27

27

Practice: Planning Game

• scope of next release
• business sets priorities
• development provides estimates
• find shortest path to most value

Daedalos International, Copyright © 2000 – 2001 28

28

Practice: Small Releases

• get into production quickly
• release new versions frequently
• everything is maintenance

Daedalos International, Copyright © 2000 – 2001 29

29

Practice: Guiding Metaphor

• smallest architecture
• names elements

Daedalos International, Copyright © 2000 – 2001 30

30

Practice: Simple Design

• passes tests
• avoids duplication
• shows intentions
• has fewest parts

Daedalos International, Copyright © 2000 – 2001 31

31

Practice: Unit Tests First

• declaration of goal
• defends the simple
• stands for programmer

Daedalos International, Copyright © 2000 – 2001 32

32

Practice: Refactoring

• change to improve expression
• motivated only by need
• relentless, small steps

Daedalos International, Copyright © 2000 – 2001 33

33

Practice: Pair-Programming

• temporary associations
• assemble experience
• bolster courage
• spread wisdom

Daedalos International, Copyright © 2000 – 2001 34

34

Practice: Collective Code
Ownership

• universal obligation to add value
• (also must understand “value”)
• more responsibility than no owner
• more ability than individual owner

Daedalos International, Copyright © 2000 – 2001 35

35

Practice: Continuous Integration

• code stays ready to integrate
• integrate as attention wanes
• synchronize at single station
• unit tests at 100% good

Daedalos International, Copyright © 2000 – 2001 36

36

Practice: 40-hour Week

• not enough to just “try”
• overtime conceals larger problems
• find performance maximum
• don’t exceed it two weeks in a row

Daedalos International, Copyright © 2000 – 2001 37

37

Practice: On-Site Customer

• intimate reference
• able and likely to use system
• highly valued people
• but less so than good system

Daedalos International, Copyright © 2000 – 2001 38

38

Practice: Coding Standards

• code reveals authors’ intention
• cast as solutions to problems
• spread by pairing
• accepted by professionals

Daedalos International, Copyright © 2000 – 2001 39

39

Why is XP hard?

• It's hard to do simple things
• It's hard to admit you don't know
• It's hard to collaborate
• It's hard to break down emotional walls
• It's hard to accept responsibility for your development process

Daedalos International, Copyright © 2000 – 2001 40

40

When you shouldn't try XP

• Culture
• Big specification
• Paper-driven programming
• Long hours expected
• Smart and clever developers
• Size matters
• Exponential cost curve
• Long feedback cycle
• Wrong physical environment

Culture
Business culture. Any power culture is going to have problems with a team that
insists on steering
Big specification
If a customer or manager insists on a big spec (and analysis and design) before
programming, there's going to be friction. You must essentially ask them to trade
something that gives them control for a dialog that requires continuous
involvement.
Paper-driven programming
If management or customers demand piles of documentation, it becomes a task.
After a while, the card always seems to disappear.
Long hours expected
Proves your "commitment to the company". XP is strenuous; you can't do it tired.
If the production rate of a good team at top speed isn't enough for your company,
XP can't help.
Smart and clever developers
Smart people have a very difficult time finding the simplest thing that could
possibly work. They can't trade the "guess right" game for close communication,
sharing, and continuous evolution.

Daedalos International, Copyright © 2000 – 2001 41

41

You don't HAVE to do XP

• Don't force it
– If the team can't agree on adopting new practices
– If you can't find a coach

• The time may not be ripe. The team may not be ripe. It may
never be ripe.

• You don't HAVE to do XP.

If the team can't agree on adopting new practices, or you can't find a coach, forget
it. The time may not be ripe. The team may not be ripe. It may never be ripe. You
don't HAVE to do XP.

Daedalos International, Copyright © 2000 – 2001 42

42

First Steps

• Find a coach
• Play to win
• Rapid feedback
• Concrete experiments
• Assume simplicity
• Open, honest communication
• The simplest thing that could possibly work
• EMBRACE CHANGE

Daedalos International, Copyright © 2000 – 2001 43

43

Contact

For further information please contact

Daedalos Consulting GmbH
Ruhrtal 5
D-58456 Witten
Germany

Tel.: +49 (0)2302 979-0
Fax: +49 (0)2302 979-199
E-Mail: info@daedalos.com

Daedalos Consulting AG
Seestrasse 510
8038 Zürich
Switzerland

Tel.: +41 (1) 481 07 20
Fax: +41 (1) 481 07 24
E-Mail: info@daedalos.com

